# JMY980 核心板与 JMY901 读写板用户手册

(Revision 1.00)

北京金木雨电子有限公司 2012/6/4





# 景

| 1 简介                                    | 2  |
|-----------------------------------------|----|
| 2 接口与地址分配说明                             | 2  |
| 2.1 管脚说明                                | 2  |
| 2.2 地址空间分配和片选信号定义                       | 4  |
| 3 程序烧写与系统下载                             | 5  |
| 3.1bootloader 烧写                        | 5  |
| 3.1.1 烧写 Nor Flash 软件安装                 | 6  |
| 3.1.2ARM9 NOR Flash 烧写流程                | 8  |
| 3.2 下载操作系统                              | 12 |
| 3.2.1 下载系统前准备工作                         | 12 |
| 3.2.2 下载 Linux 系统                       | 13 |
| 3.2.3 下载 WindowsCE 系统                   | 19 |
| 4 WindowsCE 6.0 开发指南                    | 21 |
| 4.1 建立 WindowsCE 6.0 开发环境               | 21 |
| 4.1.1 安装 Visual Studio 2005 及补丁         | 22 |
| 4.1.2 安装 Windows CE 6.0 及补丁             | 29 |
| 4.1.3 安装 BSP 及内核工程示例                    | 38 |
| 4.1.4 各个驱动程序源代码的位置                      | 40 |
| 4.2 配置和编译 Windows CE 6.0 内核及 Bootloader | 41 |
| 4.2.1 编译缺省内核工程示例                        | 41 |
| 4.2.2 编译和烧写 Bootloader 之 NBOOT          | 44 |
| 4.2.3 在 BSP 中修改 LCD 类型及串口输出功能           | 46 |
| 4.2.4 制作和修改 Windows CE 启动 Logo          | 47 |
| 4.2.5 创建 SDK                            | 49 |
| 4.2.6 安装 SDK                            | 51 |
| 4.3 与 PC 同步                             | 54 |
| 4.3.1 安装同步驱动与软件                         | 54 |
| 4.4 通过 VS2005 创建应用程序,并编译下载到开发板运行        | 60 |
| 4.4.1 创建项目                              | 60 |



## 1简介

JMY980 是一个最小系统板,具有最基本的系统配置:

CPU: 三星 S3C2440, 主频 400MHz; NOR FLASH: 2MByte, 掉电非易失; NAND FLASH: 256MByte, 掉电非易失;

SDRAM: 64MByte,由2片16bit宽度的32MByte SDRAM组成,时钟频率高达100MHz;

系统时钟源: 12M 无源晶振;

实时时钟:内部实时时钟(需另接备份锂电池);

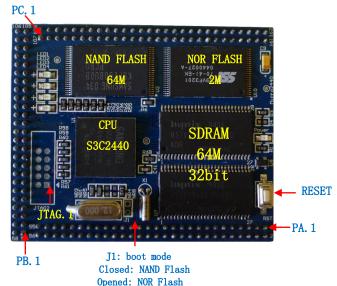
系统供电: +5V;

支持系统: Linux2.6.32/WindowsCE6.0

uCos2/2440test(裸机测试程序);

尺寸: 63×52mm;

1个56Pin 2.0mm间距GPI0接口PA;


1个50Pin 2.0mm间距LCD、CMOS CAMERA接口PB;

1 个 56Pin 2.0mm 间距系统总线接口 PC;

10Pin 2.0mm 间距 JTAG 接口:

1个电源指示灯和4个用户指示灯;

在板 JTAG, 专业电压调节芯片, 用户只要接上 5V 电源即可做简单调试开发了。



# 2接口与地址分配说明

## 2.1 管脚说明

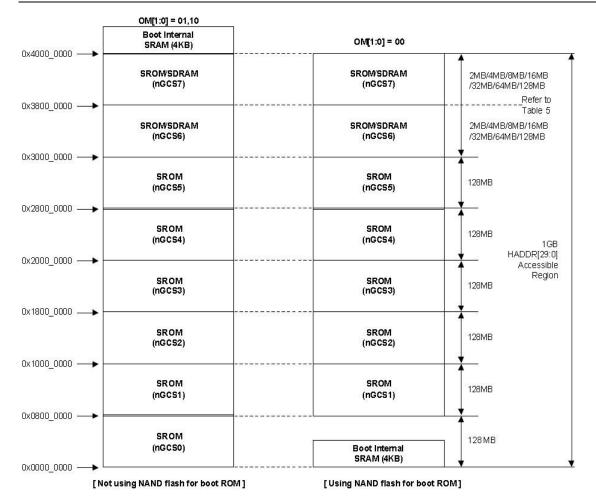
| 端口 PA | 网络名称   | 说明(有些端口可复用)          | 端口 PA | 网络名称   | 说明(有些端口可复用)          |
|-------|--------|----------------------|-------|--------|----------------------|
| PA1   | VDD5V  | 5V 电源                | PA2   | GND    | 地                    |
| PA3   | EINT19 | EINT19/GPG11         | PA4   | EINT18 | EINT18/GPG10/nCTS1   |
| PA5   | EINT17 | EINT17/GPG9/nRST1    | PA6   | EINT16 | EINT16/GPG8          |
| PA7   | EINT15 | EINT15/GPG7/SPICLK1  | PA8   | EINT14 | EINT14/GPG6/SPIMOSI1 |
| PA9   | EINT13 | EINT13/GPG5/SPIMIS01 | PA10  | EINT11 | EINT11/GPG3/nSS1     |
| PA11  | EINT8  | EINT8/GPG0           | PA12  | EINT6  | EINT6/GPF6           |
| PA13  | EINT5  | EINT5/GPF5           | PA14  | EINT4  | EINT4/GPF4           |
| PA15  | EINT3  | EINT3/GPF3           | PA16  | EINT2  | EINT2/GPF2           |



| PA17 | EINT1   | EINT1/GPF1               | PA18 | EINTO    | EINTO/GPFO              |
|------|---------|--------------------------|------|----------|-------------------------|
| PA19 | WP_SD   | WP_SD/GPH8               | PA20 | SDCLK    | SDCLK/GPE5              |
| PA21 | SDCMD   | SDCMD/GPE6               | PA22 | SDDATA2  | SDDATA2/GPE9            |
| PA23 | SDDATA3 | SDDATA3/GPE10            | PA24 | SDDATA0  | SDDATAO/GPE7            |
| PA25 | SDDATA1 | SDDATA1/GPE8             | PA26 | LCDVF2   | OMO(NOR-NAND Select)    |
| PA27 | LCDVF0  | LCDVF0/GPC5, Used for    | PA28 | M_nRESET | 手动复位信号(低电平有             |
|      |         | USB_EN                   |      |          | 效)                      |
| PA29 | DN1     | DN1/PDN0, USB Slave's D- | PA30 | DP1      | DP1/PDP0,USB Slave's D+ |
| PA31 | DNO     | DNO, USB Host's D-       | PA32 | DP0      | DPO, USB Host's D+      |
| PA33 | AIN2    | AIN2                     | PA34 | VDDRTC   | RTC 电源输入(1.8V)          |
| PA35 | AINO    | AINO                     | PA36 | AIN1     | AIN1                    |
| PA37 | L3MODE  | L3MODE/TOUT2/GPB2        | PA38 | L3DATA   | L3DATA/TOUT3/GPB3       |
| PA39 | L3CLOCK | L3LOCK/TCLKO/GPB4        | PA40 | I2SLRCK  | I2SLRCK/GPE0            |
| PA41 | I2SSCLK | I2SSCLK/GPE1             | PA42 | CDCLK    | CDCLK/GPE2              |
| PA43 | I2SSDI  | I2SSDI/GPE3              | PA44 | I2SSD0   | I2SSDO/GPE4             |
| PA45 | GPB0    | TOUTO/GPB0               | PA46 | GPB1     | TOUT1/GPB1              |
| PA47 | TXD2    | TXD2/nRTS1/GPH6          | PA48 | RXD2     | RXD2/nCTS1/GPH7         |
| PA49 | TXD1    | TXD1/GPH4                | PA50 | RXD1     | RXD1/GPH5               |
| PA51 | TXD0    | TXD0/GPH2                | PA52 | RXD0     | RXDO/GPH3               |
| PA53 | nCTS0   | nCTS0/GPH0               | PA54 | nRTS0    | nRTSO/GPH1              |
| PA55 | I2CSDA  | I2CSDA/GPE15             | PA56 | I2CSCL   | I2CSCL/GPE14            |

| 端口 PB | 网络名称     | 说明(有些端口可复用)         | 端口 PA | 网络名称     | 说明(有些端口可复用)      |
|-------|----------|---------------------|-------|----------|------------------|
| PB1   | TSYM     |                     | PB2   | TSYP     |                  |
| PB3   | TSXM     |                     | PB4   | TSYM     |                  |
| PB5   | VD22     | VD22/GPD14          | PB6   | VD23     | VD23/GPD15       |
| PB7   | VD20     | VD20/GPD12          | PB8   | VD21     | VD21/GPD13       |
| PB9   | VD18     | VD18/GPD10          | PB10  | VD19     | VD19/GPD11       |
| PB11  | VD16     | VD16/GPD8           | PB12  | VD17     | VD17/GPD9        |
| PB13  | VD14     | VD14/GPD6           | PB14  | VD15     | VD15/GPD7        |
| PB15  | VD12     | VD12/GPD4           | PB16  | VD13     | VD13/GPD5        |
| PB17  | VD10     | VD10/GPD2           | PB18  | VD11     | VD11/GPD3        |
| PB19  | VD8      | VD8/GPD0            | PB20  | VD9      | VD9/GPD1         |
| PB21  | VD6      | VD6/GPC14           | PB22  | VD7      | VD7/GPC15        |
| PB23  | VD4      | VD4/GPC12           | PB24  | VD5      | VD5/GPC13        |
| PB25  | VD2      | VD2/GPC10           | PB26  | VD3      | VD3/GPC11        |
| PB27  | VD0      | VDO/GPC8            | PB28  | VD1      | VD1/GPC9         |
| PB29  | LCD_PWR  | LCD_PWR/EINT12/GPG4 | PB30  | VM       | VM/VDEN/GPC4     |
| PB31  | VFRAME   | VFRAME/VSYNC/GPC3   | PB32  | VLINE    | VLINE/HSYNC/GPC2 |
| PB33  | VCLK     | VCLK/GPC1           | PB34  | LEND     | LEND/GPC0        |
| PB35  | CAMDATA7 | CAMDATA7/GPJ7       | PB36  | CAMDATA6 | CAMDTAT6/GPJ6    |
| PB37  | CAMDATA5 | CAMDATA5/GPJ5       | PB38  | CAMDATA4 | CAMDATA4/GPJ4    |
| PB39  | CAMDATA3 | CAMDATA3/GPJ3       | PB40  | CAMDATA2 | CAMDATA2/GPJ2    |




| PB41 | CAMDATA1  | CAMDATA1/GPJ1  | PB42 | CAMDATA0 | CAMDATAO/GPJ0  |
|------|-----------|----------------|------|----------|----------------|
| PB43 | CAMCLK    | CAMCLK/GPJ11   | PB44 | CAM_PCLK | CAM_PCLK/GPJ8  |
| PB45 | CAM_VSYNC | CAM_VSYNC/GPJ9 | PB46 | CAM_HREF | CAM_HREF/GPJ10 |
| PB47 | EINT20    | EINT20/GPG12   | PB48 | CAMRST   | CAMRESET/GPJ12 |
| PB49 | VDD5V     | VDD5V          | PB50 | GND      | GND            |

| 端口 PC | 网络名称    | 说明(有些端口可复用) | 端口 PA | 网络名称    | 说明(有些端口可复用) |
|-------|---------|-------------|-------|---------|-------------|
| PC1   | EINT7   | EINT7/GPF7  | PC2   | EINT9   | EINT9/GPG1  |
| PC3   | LnGCS1  | 片选 LnGCS1   | PC4   | LnGCS3  | 片选 LnGCS3   |
| PC5   | LnGCS2  | 片选 LnGCS2   | PC6   | LnWBE1  | LnWBE1      |
| PC7   | LnGCS4  | 片选 LnGCS4   | PC8   | LnWE    | LnWE        |
| PC9   | Ln0E    | Ln0E        | PC10  | nRESET  | nRESET      |
| PC11  | nWAIT   | nWAIT       | PC12  | nXDACK0 | nXDACKO     |
| PC13  | LADDR0  | 地址线 0       | PC14  | nXDREQ0 | nXDREQ0     |
| PC15  | LADDR1  | 地址线1        | PC16  | LADDR2  | 地址线 2       |
| PC17  | LADDR3  | 地址线3        | PC18  | LADDR4  | 地址线 4       |
| PC19  | LADDR5  | 地址线 5       | PC20  | LADDR6  | 地址线 6       |
| PC21  | LADDR7  | 地址线7        | PC22  | LADDR8  | 地址线 8       |
| PC23  | LADDR9  | 地址线 9       | PC24  | LADDR10 | 地址线 10      |
| PC25  | LADDR11 | 地址线 11      | PC26  | LADDR12 | 地址线 12      |
| PC27  | LADDR13 | 地址线 13      | PC28  | LADDR14 | 地址线 14      |
| PC29  | LADDR15 | 地址线 15      | PC30  | LADDR16 | 地址线 16      |
| PC31  | LADDR17 | 地址线 17      | PC32  | LADDR18 | 地址线 18      |
| PC33  | LADDR19 | 地址线 19      | PC34  | LADDR20 | 地址线 20      |
| PC35  | LADDR21 | 地址线 21      | PC36  | LADDR22 | 地址线 22      |
| PC37  | LADDR23 | 地址线 23      | PC38  | LADDR24 | 地址线 24      |
| PC39  | LDATA0  | 数据线 0       | PC40  | LDATA1  | 数据线1        |
| PC41  | LDATA2  | 数据线 2       | PC42  | LDATA3  | 数据线3        |
| PC43  | LDATA4  | 数据线 4       | PC44  | LDATA5  | 数据线 5       |
| PC45  | LDATA6  | 数据线 6       | PC46  | LDATA7  | 数据线 7       |
| PC47  | LDATA8  | 数据线 8       | PC48  | LDATA9  | 数据线 9       |
| PC49  | LDATA10 | 数据线 10      | PC50  | LDATA11 | 数据线 11      |
| PC51  | LDATA12 | 数据线 12      | PC52  | LDATA13 | 数据线 13      |
| PC53  | LDATA14 | 数据线 14      | PC54  | LDATA15 | 数据线 15      |
| PC55  | VDD5V   | 电源 5V       | PC56  | GND     | 地           |

## 2.2 地址空间分配和片选信号定义

S3C2440 支持两种启动模式: Nand Flash 和 Nor Flash 启动。 两种启动模式下,各个片选的存储空间分配是不同的,如下图:





#### 上图中,

左边是 nGCSO 片选的 Nor Flash 启动模式下的存储分配图;

右边是 Nand Flash 启动模式下的存储分配图;

下面是器件地址空间分配和其片选定义

在进行器件地址说明之前,有一点需要注意,nGCSO 片选的空间在不同的启动模式下,映射的器件是不一样的。由上图可以知道:

在 NAND Flash 启动模式下,内部的 4K Bytes Boot SRAM被映射到 nGCSO 片选的空间;在 Nor Flash 启动模式下(非 Nand Flash 启动模式),与 nGCSO 相连的外部存储器 Nor Flash 就被映射到 nGCSO 片选的空间

SDRAM 地址空间: 0x30000000 ~ 0x34000000。

# 3程序烧写与系统下载

## 3.1bootloader 烧写

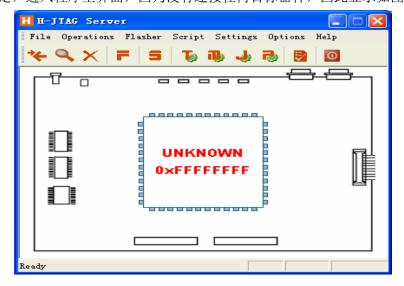
新板子是没有任何程序的,我们通过 JTAG 接口烧写第一个程序,就是 Supervivi,借助 Suppervivi 可以使用 USB 口下载更加复杂的系统程序等。



## 3.1.1 烧写 Nor Flash 软件安装

H-JTAG 软件安装要求: 计算机必须有并口。(该软件安装仅仅在第一次使用的情况下,若已安装,该步骤省略)

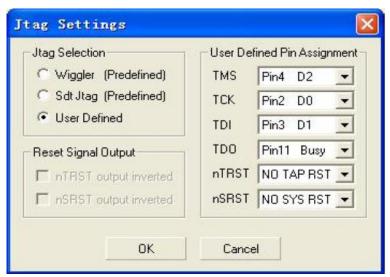
#### 1、安装 H-JTAG


H-JTAG 安装文件位于光盘的"JMY980TOOLS\H-JTAG"目录,双击运行,按照其提示安装即可。



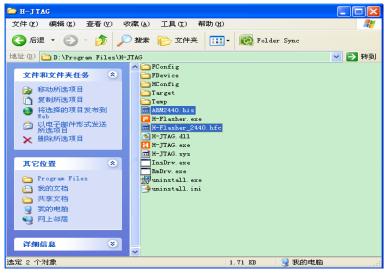
安装完会在桌面生成 H-JTAG 和 H-Flasher 快捷方式,双击运行 H-JTAG,程序将自动检测是否连接了 JTAG 设备,因为之前我们还没有做任何设置,所以会跳出一个提示窗口:




点击确定,进入程序主界面,因为没有连接任何目标器件,因此显示如图所示:






#### 2、设置 JTAG 端口

在 H-JTAG 主界面的菜单里点 Setting->Jtag Setting, 做如下图所示设置, 点 OK 返回主界面。



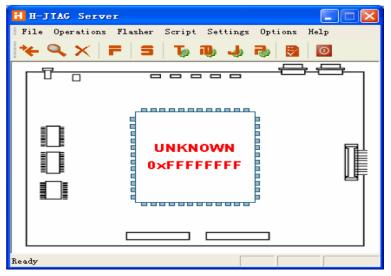
#### 3、设置初始化脚本

把光盘"JMY980T00LS\H-JTAG"目录中的 ARM2440. his 和 H-Flasher\_2440. hfc 文件复制到 H-JTAG 的安装目录,如图:



在 H-JTAG 的主界面,点 Script->Init Script,弹出 Init Script 窗口,点该窗口下面的 Load 按钮,找到并选择打开刚刚复制的 ARM2440.his 文件,如图:






这时, Init Script 窗口会被载入的脚本填充,如图,注意不要点选"Enable Auto Init",点 OK 退回 H-JTAG 主界面。

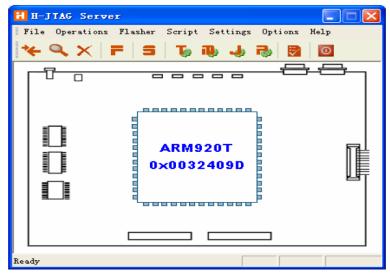
## 3.1.2ARM9 NOR Flash 烧写流程


- 1、检查烧写工具
  - (1) 带并口,并且安装了 H-JTAG 软件电脑一台。
  - (2) NOR Flash 并口线一条。
  - (3) JMY901 开发板或自带开发板一个。
- 2、配置 H-JTAG 软件

打开软件如图:



在 H-JTAG 主界面的菜单里点 Setting->Jtag Settings, 做如下图配置:






#### 3、连接设备

- (1) 给核心板连接好+5V 电源线,不供电。
- (2) 并口线连接核心板和电脑。
- (3) 确认 JMY901 拨动开关 S2 位于 NOR 端。
- (4) 打开电源。
- 4、检查设备连接是否正常

点 Operations->Detect Target, 出现如下界面, 说明已经连接上:



5、装载 H-Flasher\_2440.hfc

点 Flasher->Start H-Flasher, 出现如下 H-Flash 界面:



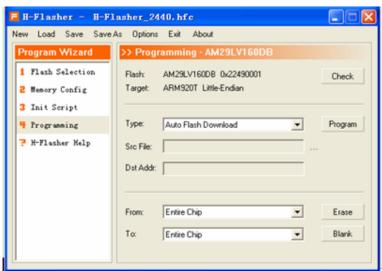


点 H-Flash 界面中 Load, 装入 H-Flasher\_2440.hfc:

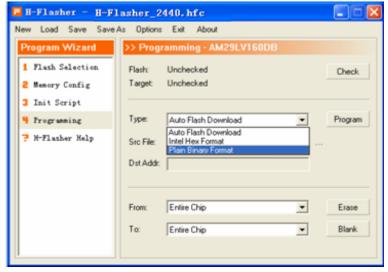


载入后,会出现如下界面,选择 SST39VF3201:




#### 6、设置烧写参数

(1) 点击 4Programing

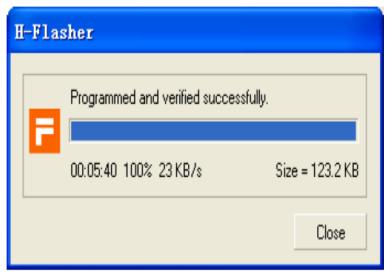





(2) 点击 Check 按钮, 假如核心板子没有问题, 显示如下界面:



(3) 点 Type 下拉列表,选择"Plain Binary Format":




- (4) 再点 Src File 右侧的浏览按钮...,选择所要烧写的文件 supervivi (JMY980TOOLS\images\supervivi-128M)。
- (5) 并在 Dst Addr 一栏中输入 0。

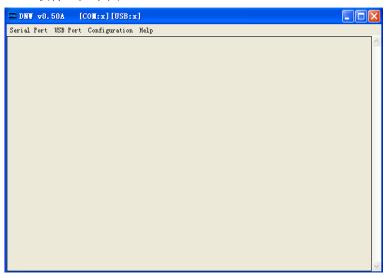


#### 7、烧写

点 Program 烧写,烧写成功画面如下图:

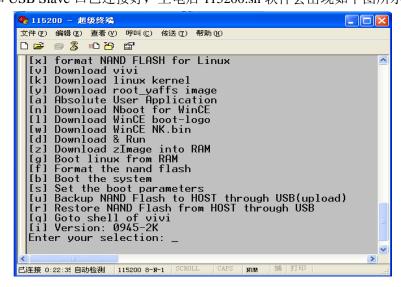


## 3.2 下载操作系统


## 3.2.1 下载系统前准备工作

- 1、检查下载工具
- (1) 带 USB 及串口电脑一台。
- (2) USB、串口电缆各一条。
- (3) JMY980 核心板一个。
- (4) 开发底板一个(自备或使用 JMY901)。
- (5) DNW 软件和 115200.ht 超级终端软件(这 2 个软件无需安装, 直接复制到硬盘即可运行)。
- (6) 安装 USB 下载驱动 (JMY980TOOLS\usb 下载驱动)。
- (7) JMY901 拨动开关 S2 处于 NOR 端 (NOR Flash 启动模式)。
- 2、打开软件
- (1) 打开 115200.ht 超级终端软件,如下图:





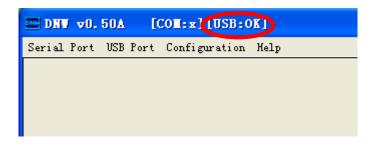

(2) 打开 DNW 软件, 如下图:



## 3.2.2 下载 Linux 系统

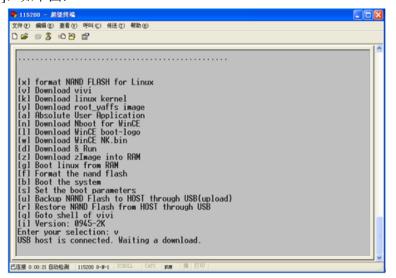
1、确保串口和 USB Slave 口已连接好,上电后 115200.sh 软件会出现如下图所示信息:






#### 2、格式化 Nand Flash

选择功能键[f],开始对 Nand Flash 进行分区,如下图:




3、 查看 DNW 软件中 "USB: OK", 如下图:



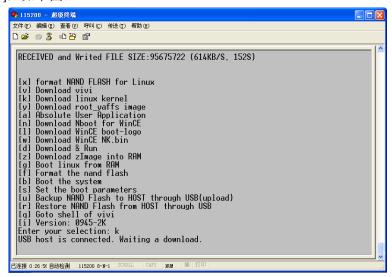

#### 4、安装 bootloader

选择功能键[v],如下图:




点击 DNW 软件的 "USB Port->Transmit->Transmit",如下图:






选择 supervivi-128M, 点打开, 如下图:



#### 5、安装 Linux 内核

选择功能键[k],如下图:




点击 DNW 软件的 "USB Port->Transmit->Transmit",选择 zImage\_Q35,如下图:





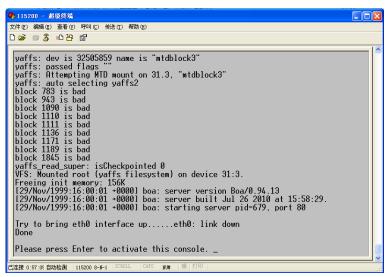
#### 6、安装根文件系统

选择功能键[y],如下图:



点击 DNW 软件的 "USB Port->Transmit->Transmit",选择 rootfs\_qtopia\_qt4.img,如下图:




开始传送文件系统,时间稍长,请等候,传送过程如下图:



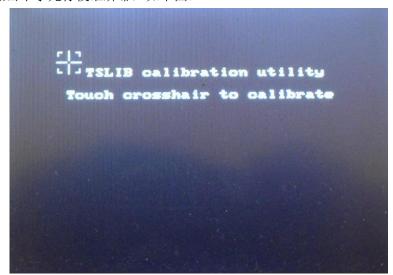
传送完毕显示 Load ysffs OK。

#### 7、进入Linux系统

断电后将 JMY901 拨动开关 S2 拨到 NAND 端,然后重新上电,便从 NAND Flash 启动系统了,如下图:



按回车便可进入 Linux 文件系统进行操作了,如下图:




#### 8、 带触摸显示屏的操作

如果连接了触摸屏,开机后便可看见如下 Linux 启动画面:



触控校准,点击十字光标校准屏幕,如下图:



校准后进入 Qtopia 界面,如下图:



点击屏幕进入系统界面,如下图:





到此 Linux 系统安装完毕!

## 3.2.3 下载 WindowsCE 系统

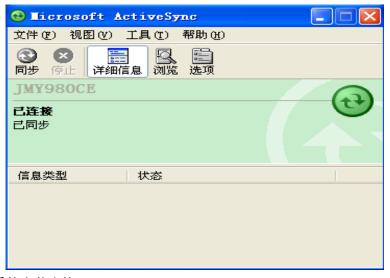
下载 WinCE 系统的方法与 Linux 系统一样,这里就不一一演示了,只是功能选择和烧写的文件不同,烧写文件存放在"JMY980TOOLS\images\wince6.0"目录下。 烧写步骤:

- 1、选择功能键[n], 烧写文件 nboot\_Q35.bin;
- 2、选择功能键[1], 烧写文件 bootlogo.bmp;
- 3、选择功能键[w], 烧写文件 NK\_Q35.bin;
- 4、安装 WinCE 与 WindowsXP 的同步软件 ActiveSync, 存放目录"JMY980TOOLS\windows 平台工具\ActiveSync";

烧写完系统后切换到 NAND Flash 启动,触摸屏会出现如下界面:



启动 WinCE 界面,如下图:






进入 WinCE 操作系统,如下图:



同步软件 ActiveSync 会弹出,如下图:



到此 WinCE 系统安装完毕!



## 4 WindowsCE 6.0 开发指南

## 4.1 建立 WindowsCE 6.0 开发环境

注: 以下软件和步骤均基于 Microsoft Windows XP SP3 系统, 其它 Windows 系统未经测试。

Windows CE 6.0 的安装过程十分繁琐,并且对开发主机的要求比较高(否则会很慢),我们建议用户特别是初学者务必按照我们介绍的步骤安装开发环境。

这里是我们采用的开发主机的配置,仅供参考:

CPU: Pentium(R) Dual-Core E6700 @3.20GHZ

内存: DDR2 4GB 硬盘空间: 500GB

安装所需的软件列表如下(部分提供):

Visual Studio 2005(不提供)

下载地址:

http://download.microsoft.com/download/e/1/4/e1405d9e-47e3-404c-8b09-489437b27fb0/En\_vs\_2005\_Pro\_90\_Trial.img

Visual Studio 2005 Service Pack 1(文件名: VS80sp1-KB926601-X86-ENU.exe)

下载地址:

http://www.microsoft.com/en-us/download/details.aspx?id=5553

Visual Studio 2005 Service Pack 1 Update for Windows Visat

(文件名: VS80sp1-KB932232-X86-ENU.exe)

下载地址:

http://www.microsoft.com/en-us/download/details.aspx?id=7524

Visual Studio 2005 Service Pack 1 ATL Security Update

(文件名: VS80sp1-KB971090-X86-INTL.exe)

下载地址:

 $\underline{http://www.microsoft.com/en-us/download/details.aspx?id=25287}$ 

Windows Embedded CE 6.0

下载地址:

http://www.microsoft.com/en-us/download/details.aspx?id=20083

Windows Embedded CE 6.0 Platform Buider Service Pack 1

下载地址:

http://www.microsoft.com/en-us/download/details.aspx?id=4097

Windows Embedded CE 6.0 R2

下载地址:

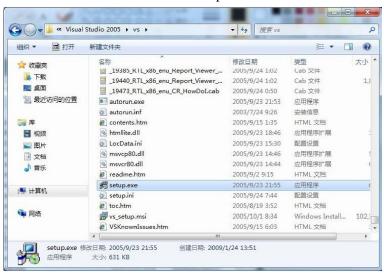
http://www.microsoft.com/en-us/download/details.aspx?id=18111

Windows Embedded CE 6.0 R3

下载地址:

http://www.microsoft.com/downloads/details.aspx?familyid=bc247d88-ddb6-4d4a-a595-8eee355 6fe46&displaylang=ja&displaylang=en

以上列表顺序也说明了这些软件的安装顺序: 先安装 Visual Studio 2005 及补丁,再安装




Windows CE 6.0 及补丁。

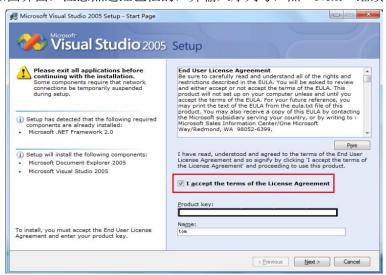
注: Windows CE 6.0 所使用的 Platform Buider 和以往的 Windows CE 5.0/4.2 等均不同,它并不是独立的开发平台软件,而是作为 VS2005 的一个插件来安装使用的,因此必须先安装 VS2005,以后所有的内核配置编译等开发都基于 VS2005 进行。

## 4.1.1 安装 Visual Studio 2005 及补丁

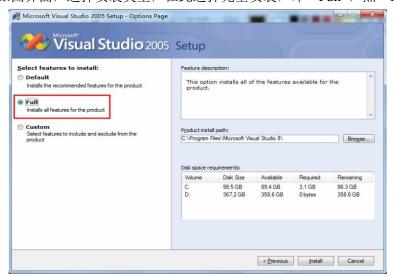
Step1: 打开 Visual Studio 2005 文件夹,找到 setup.exe,双击运行开始安装。



Step2: 出现如图界面,点 "Install Visual Studio 2005",继续




Step3: 出现如图界面,稍等片刻,点"Next"继续






Step4: 出现如图界面,注意点选红色框的,并输入序列号,点"Next"继续



Step5: 出现如图界面,选择安装类型,在此选择完全安装,即"Full",点"Next"继续



Step6: 出现如图界面,开始正式安装 Visual Studio 2005,此过程较长,请耐心等待。





Step7: Visual Studio 2005 安装完毕,出现如下画面,点"Finish"结束安装。

Windows Embedded CE 6.0 Setup



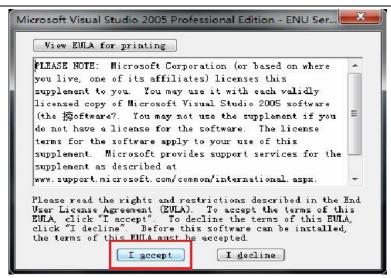
接着会出现如图界面,点"Exit"退出即可。



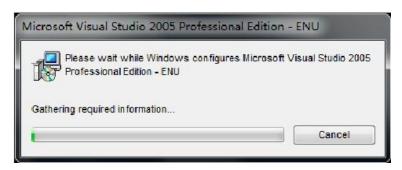


Step8: 现在开始安装第一个补丁文件 Visual Studio 2005 Service Pack 1,双击运行 VS80sp1-KB926601-X86-ENU.exe 开始安装,出现如图界面






Step9:须稍等片刻,出现如图画面,点"OK"开始正式安装



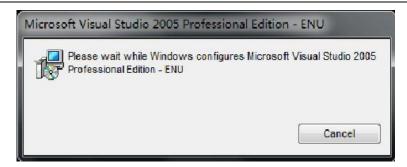

Step10:接受安装许可协议,点"I accept"继续





Step11: 出现安装过程界面,此过程较长,请耐心等待

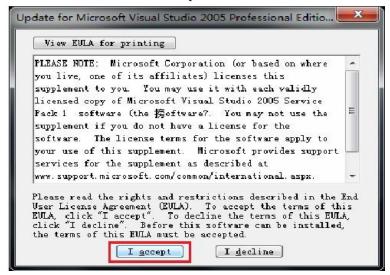



Step12: 安装完毕,出现如下界面,点"OK"结束本补丁的安装



Step13:接下来安装第二个补丁 Visual Studio 2005 Service Pack 1 Update for Windows Vista,双 击运行 VS80sp1-Kb932232-X86-ENU.exe,依次出现如图界面








Step14: 稍等片刻,出现如图界面,点"OK"继续



Step15: 出现安装许可协议界面,点"I accept"继续



Step16: 出现安装过程界面,此过程较长,请耐心等待



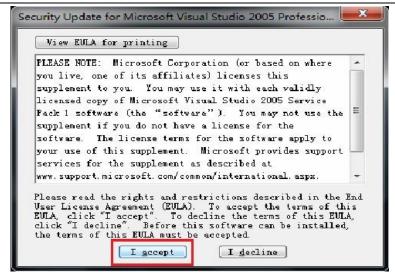
Step17: 安装完毕,出现如下界面,点"OK"结束本补丁的安装



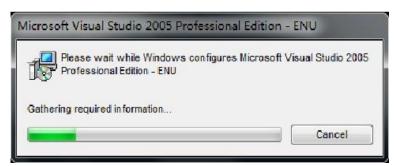


Step18: 接下来安装第三个补丁 Visual Studio 2005 Service Pack 1 ATL Security Update, 双击运行 VS80sp1-KB971090-X86-INTL.exe, 依次出现如图界面






Step19: 稍等片刻,出现如图界面,点"OK"继续




Step20: 出现安装许可协议界面,点"I accept"继续





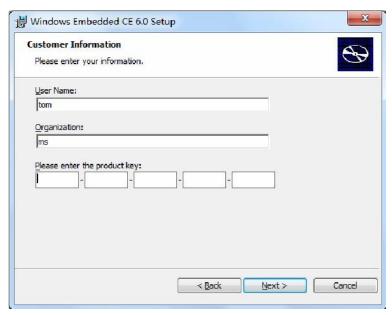
Step21: 出现安装过程界面,此过程较长,请耐心等待



Step22: 安装完毕, 出现如下界面, 掉 "OK"结束本补丁的安装



至此,基于 Windows XP 平台的 Visual Studio 2005 及其补丁已经安装完毕。

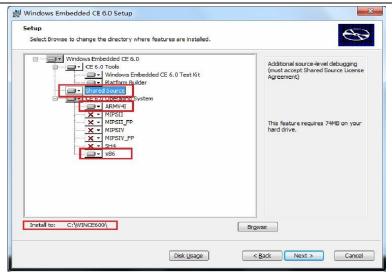

## 4.1.2 安装 Windows CE 6.0 及补丁

Step1: 点击"Windows Embedded CE 6.0.msi"开始安装,如图,点"Next"继续

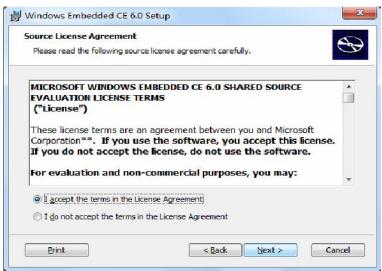




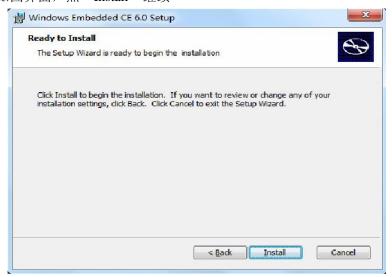
Step2: 输入产品密钥,点"Next"继续




Step3: 出现安装许可协议界面,选择"I accept",点"Next"继续

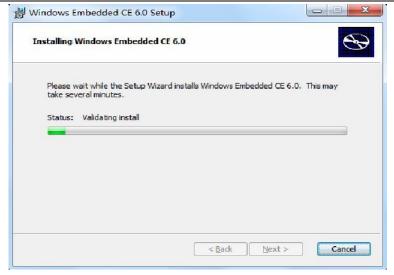



Step4: 选择及设置如图,点"Next"继续






Step5: 出现如图界面,选择如图,点"Next"继续




Step6: 出现如图界面,点"Install"继续



Step7: 开始正式安装,如图,此过程时间较长,请耐心等待

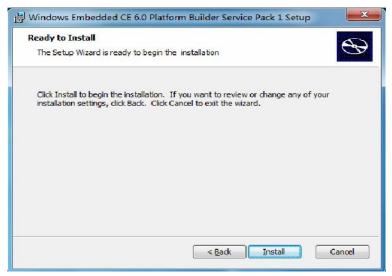




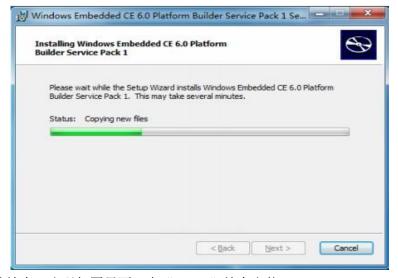
Step8: 安装结束, 出现如图界面, 点 "Finish"结束安装。



Step9:接下来安装 Windows CE 6.0 的第一个补丁 "Windows Embedded CE 6.0 Platform Builder Service Pack 1.msi",点击安装文件,出现如图界面,点"Next"继续




Step10: 出现如图界面,选"I accept",并点"Next"继续





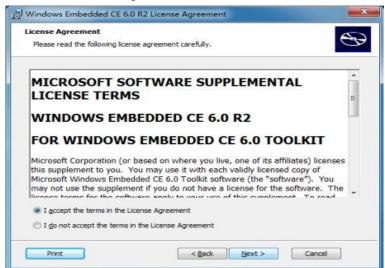

Step11: 出现如图界面,点"Next"继续



Step12: 开始正式安装,如图,此过程时间较长,请耐心等待

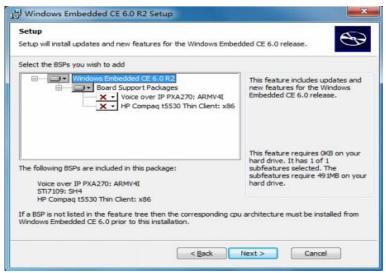


Step13: 安装结束,出现如图界面,点"Finish"结束安装。

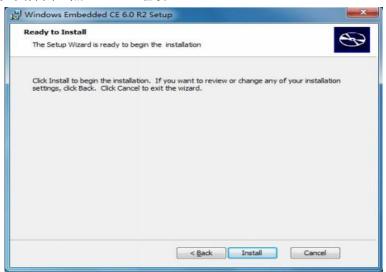




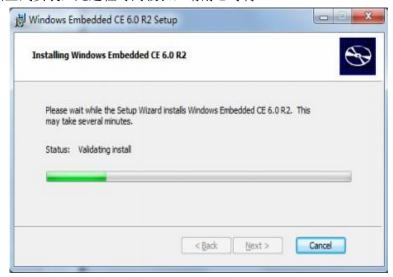

Step14: 接下来安装 Windows CE 6.0 的第二个补丁 "Windows Embedded CE 6.0 R2.msi", 如图, 点 "Next"继续




Step15: 出现如图界面,选 "I accept",点 "Next" 继续







Step16: 出现如图界面,不用做任何改动,点"Next"继续



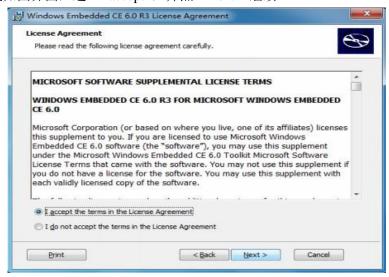
Step17: 出现如图界面,点"Next"继续



Step18: 开始正式安装,此过程时间较长,请耐心等待

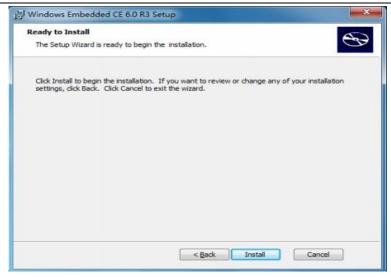


Step19: 安装结束,出现如图界面,点"Finish"结束安装






Step 20: 现在开始安装 Windows CE 6.0 的第三个补丁 R3, 开始安装 "Windows Embedded CE 6.0 R3.msi", 如图




Step21: 出现如图界面,选"I accept",并点"Next"继续



Step22: 出现如图界面,点"Next"继续



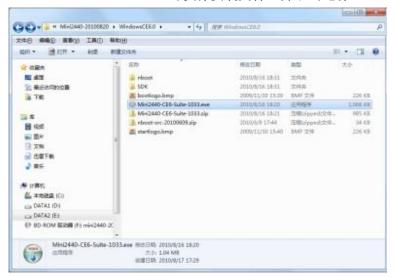


Step23: 开始正式安装,此过程时间较长,请耐心等待



Step24: 安装结束,出现如图界面,点"Finish"结束安装



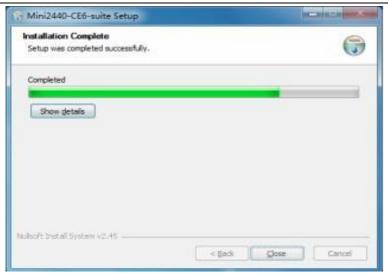



## 4.1.3 安装 BSP 及内核工程示例

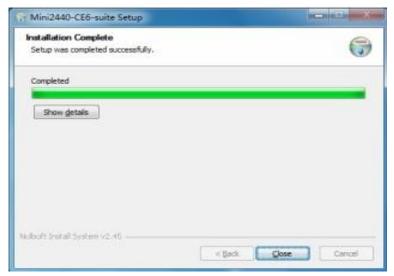

JMY980 ( mini2440 ) 的 BSP 和示例工程等文件只有一个安装文件 mini2440-ce6-suite-1033.exe, 其中包含所有的BSP源代码及两个内核工程示例。

注:请以以下步骤安装 BSP,建议不要改变安装路径,否则有可能无法编译通过。

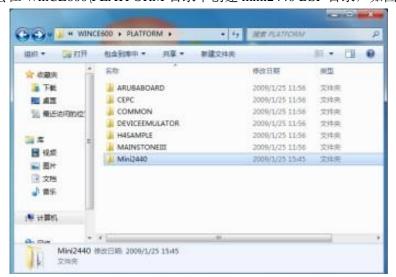
Step1: 找到 mini2440-ce6-suite-1033.exe 可执行安装文件,并双击运行




Step2: 保持各项设置不变,点"Install"继续

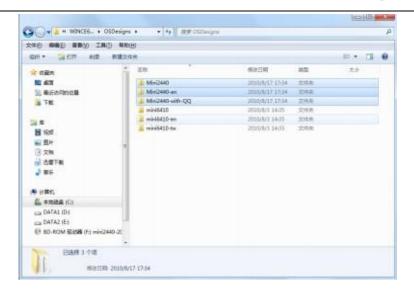



Step3: 出现安装过程界面,因为安装的文件很小,安装会很快结束






Step4: 安装结束,出现如图界面,点 "Close"结束安装




安装完毕,会在WinCE600\PLATFORM 目录下创建 mini2440 BSP 目录,如图



并在 WinCE600\OSDesigns 目录下分别创建三个内核示例工程文件目录,如图





#### 其中:

Mini2440 目录中包含的工程文件,可以用来编译生成光盘中对应的中文版 WinCE 内核映像 Mini440-with-QQ 目录中的工程文件,可以用来编译生成包含腾讯 QQ 的 WinCE 内核映像 Mini440-en 目录中包含的工程文件,可以用来生成英文版的 WinCE 内核映像 至此,Windows CE 6.0 的开发环境就已经完全创建了。

### 4.1.4 各个驱动程序源代码的位置

Mini440 目前拥有最齐全的 BSP, 也就是驱动程序,并且每个驱动基本都有相应的图形界面测试程序,各个驱动程序的源代码位置说明如下:

- (1) LED 驱动 \Mini2440\SRC\DRIVERS\LEDdriver
- (2) 按键驱动 \Mini2440\SRC\DRIVERS\Userkey
- (3) PWM 控制蜂鸣器驱动 \Mini2440\SRC\DRIVERS\PWM
- (4) ADC 转换驱动 \Mini2440\SRC\DRIVERS\Touch 说明: ADC 驱动实际和触摸屏驱动在同一个文件中实现
- (5) I2C 驱动 \Mini2440\SRC\DRIVERS\IIC
- (6) RTC 驱动 \Mini2440\SRC\DRIVERS\Rtc
- (7) 串口驱动 \Mini2440\SRC\DRIVERS\Serial
- (8) 触摸屏驱动 \Mini2440\SRC\DRIVERS\Touch
- (9) USB 驱动 \Mini2440\SRC\DRIVERS\Usb
- (10) SD 卡驱动 \Mini2440\SRC\DRIVERS\SDHC



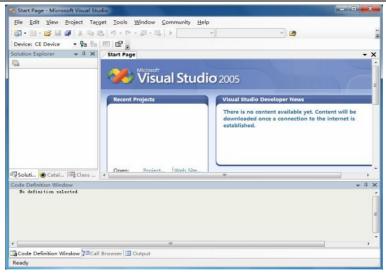
说明: 支持高速大容量 SD 卡, 最高可达 32GB

- (11) DM9000 网卡驱动 \Mini2440\SRC\DRIVERS\dm9000
- (12) 音频驱动 \Mini2440\SRC\DRIVERS\Wavedev
- (13) LCD 驱动 \Mini2440\SRC\DRIVERS\Display
- (14) 背光驱动 \Mini2440\SRC\DRIVERS\Backlight
- (15) CMOS 摄像头驱动 \Mini2440\SRC\DRIVERS\Camera

### 4.2 配置和编译 Windows CE 6.0 内核及 Bootloader

因为 Windows CE6 的内核配置比较复杂,很容易因配置不对而导致无法编译通过,众所周知 Windows CE 平台的编译是十分耗时的,因此用户按照下面的步骤直接打开编译就可以了, 光盘中 images\wince6.0 目录中有相应的编译好的内核映像文件。

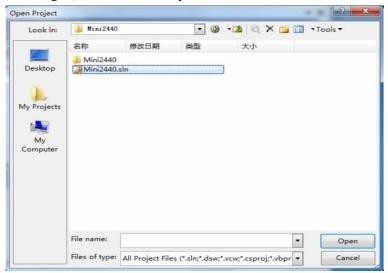
# 4.2.1 编译缺省内核工程示例


现在,我们启动 VS2005 来编译刚刚安装的 mini2440 BSP,第一次启动 VS2005 时有些事项 要注意一下,如下步骤:

Step1: 点"开始"->"程序"->"Microsoft Visual Studio 2005"->"Microsoft Visual Studio 2005", 出现如图界面,点"Continue"继续

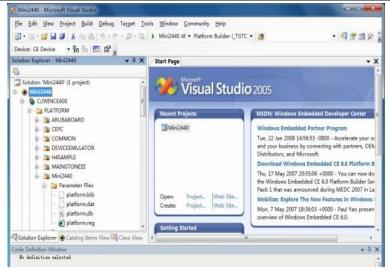


Step2: 出现如图界面,这是 VS2005 的工作界面,在此就不再对该界面赘述了,请用户参考常用的 VS2005 资料即可

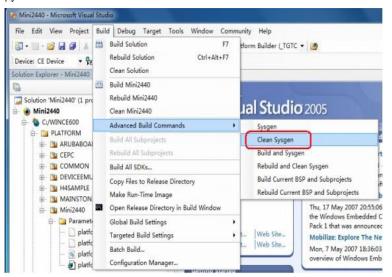




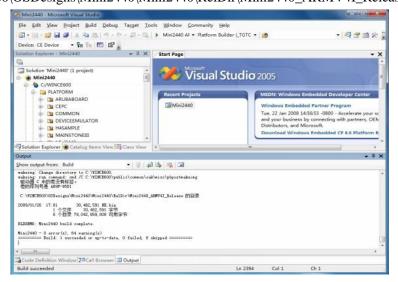

Step3: 点 File->Open->Project/Solution...,如图



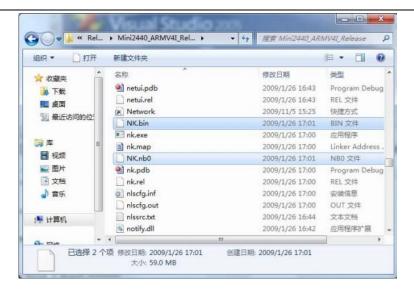

Step4: 出现文件选择窗口,找到 mini2440 的缺省内核项目文件(路径为: C:\WINCE600\OSDesigns\Mini2440),点 Open 打开它,如图




Step5: 稍等片刻, mini2440 的缺省内核项目被载入工作区, 出现如图界面







Step6: 点"Build->Advanced Build Commands->Clean Sysgen"开始编译内核,如图,此过程较长,请耐心等待



Step7:编译完毕,结果如图所示,此时会生成内核映像文件 NK.bin 和 NK.nb0,路径如下: C:\WINCE600\OSDesigns\Mini2440\Mini2440\RelDir\Mini2440\_ARMV4I\_Release







### 4.2.2 编译和烧写 Bootloader 之 NBOOT

说明:编译 Nboot 需要使用 ADS 集成开发环境,详见第五章。

Nboot 是一个十分简单的 bootloader, 其大小不到 4K, 一般烧写到 Nand Flash 的 Block 0 位置用来启动 WinCE 内核, Nboot 原由三星提供, 我们对此做了很多改进, 目前有如下特色功能:

- 自适应支持 64M/128M/256M/1G JMY980
- ●支持开机画面快速显示
- ●支持加载 WinCE 内核的动态进度条
- ●启动 WinCE 仅需 5-10 秒,视内核大小而定

需要注意的是,Nboot 并不具备烧写功能,它只能读取已经烧写处理好的文件: 开机画面 (BootLogo) 和 WinCE 内核。

Nboot 具有很方便的定制性,你可以通过头文件定义修改开机画面的显示位置、背景,以及进度条的颜色、位置、长宽等,这些定义位于 option.h 文件中,如下:

//通过更改定义,选择相应的 LCD 型号,此处默认选择 Q35,表示奇美横屏 LCD

//#define LCD N35

//#define LCD L80

//#define LCD Q35

//#define LCD X35

//#define LCD\_W35

//#define LCD\_A70

//#define LCD\_VGA1024768

#### //设置背景色

#define BACKGROUND\_R 0x00

#define BACKGROUND\_G 0x00

#define BACKGROUND\_B 0x00

#### //设置进度条的颜色

#define PROGRESS\_BAR\_R 0xFF

#define PROGRESS\_BAR\_G 0xFF



#### #define PROGRESS\_BAR\_B 0x00

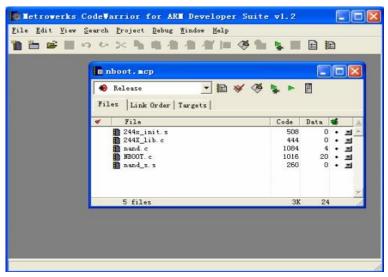
//设置开机图片的位置 #define LOGO\_POS\_TOP 0

#define LOGO POS LEFT 0

//设置启动条的位置和长宽

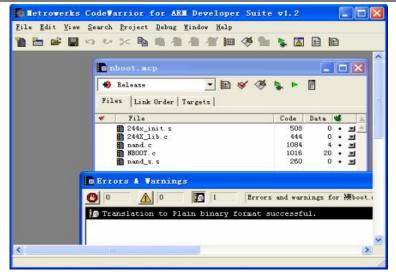
#define PROGRESS\_BAR\_TOP 260

#define PROGRESS\_BAR\_LEFT 20

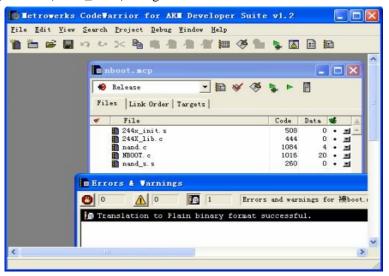

#define PROGRESS\_BAR\_WIDTH 200

#define PROGRESS\_BAR\_HEIGHT 12

下面介绍 Nboot 的编译方法和步骤:


#### 编译 Nboot

把光盘中"WindowsCE6.0"目录中的文件夹"NBOOT"文件夹复制到硬盘的某一个目录(在此为D:\work),去掉其只读属性,运行ADS1.2集成开发环境,点File->Open...打开nboot.mcp文件,如图。




这时点菜单 Project->Make 或者直接按 F7 键, 开始编译 nboot 项目,编译完毕如图:





在 D:\work\NBOOT\nboot\_Data\DebugRel 目录下会生成 nboot.bin 可执行文件,如图。



把 NBOOT 烧写到开发板的 Nand Flash。

# 4.2.3 在 BSP 中修改 LCD 类型及串口输出功能

说明: 我们提供的 BSP 目前支持以下型号的液晶屏:

- 奇美 3.5 寸 LCD 带触摸
- ●NEC3.5 寸屏带触摸
- 统宝 3.5 寸 LCD 带触摸
- ●Sharp 8 寸 LCD 带触摸
- ●7 寸屏带触摸

通过修改 mini2440\Src\Inc\options.h 头文件中 LCD TYPE 的定义,可以选择相应的 LCD 类型:

//#define LCD\_Q35 适用于奇美 3.5 寸 LCD

//#define LCD\_L80 适用于 Sharp 8 寸 LCD

//#define LCD\_T35 适用于统宝 3.5 寸 LCD

//#define LCD\_X35 适用于 Sony3.5 寸 LCD

//#define LCD\_A70 适用于群创 7 寸 LCD

提示: 光盘中缺省 LCD 型号是 LCD\_Q35。



在 options.h 文件中,用户也可以修改串口的输出功能:作为普通串口功能或者调试输出(仅限于串口1和2),如下定义:

#define KITL\_NONE

#define KITL\_SERIAL\_UART0

#define KITL SERIAL UART1

#define KITL\_USBSERIAL

#define KITL\_ETHERNET

这里缺省的定义是作为普通串口功能,如果要把串口1作为调试信息输出使用,则应该定义为:

//#define KITL\_NONE

//#define KITL\_SERIAL\_UART0

//#define KITL\_SERIAL\_UART1

//#define KITL\_USBSERIAL

//#define KITL\_ETNERNET

## 4.2.4 制作和修改 Windows CE 启动 Logo

在前面的章节,我们提到过:

Windows CE 系统的启动过程有两种 Logo: BootLogo 和 StarLogo。其中 BootLogo 是有 Nboot 加载显示的,用户可以通过修改 Nboot 的源代码调整 BootLogo 的显示位置和背景色; StartLogo则属于 BSP 的一部分,它是一个数组文件 (StartLogo.c),位于"mini2440\Src\Kernel\Oal"目录,由该目录下的 init.c 文件实现加载显示, StartLogo.c 文件可以通过本光盘中的的 StartLogoMaker.exe 工具制作生成。

StartLogoMaker 由 Linux Logo 制作工具 LogoMaker 移植而来,是一个"绿色软件",它不需要安装,直接复制到 WindowsXP/Vista 平台即可运行,使用它可以把 bmp,jpg,png 等格式的图片转换为 mini2440 BSP 所需要的数组文件 StartLogo.c,使用新生成的文件替换 BSP 中的同名文件,即可更换 WindowsCE 的启动画面,StartLogo.c 数组的头部内容如下:

//Automatic generated by StartLogo.exe


Static const unsigned short StartLogoData[] = { 240.320

0x965, 0x945, 0x164, 0x9C4, 0x1246, 0x22CA, 0x22A8, 0x2AA7,

下面是使用 StartLogoMaker.exe 制作 StartLogo.c 的步骤:

Step1:双击运行"windows 平台工具\StartLogoMaker"中的 StartLogoMaker.exe 程序,打开如图界面:





Step2: 点 File->Open 打开一个图片文件,也可以在工具栏点图标打开文件选择窗口:



Step3: 点 File->Convert,或者点工具栏的图标 17开文件输出选择窗口:





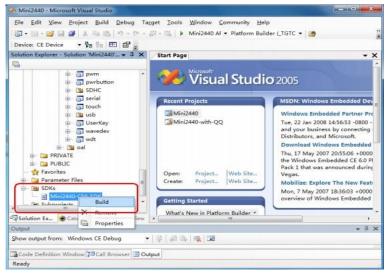
点"确定"在相应的目录会生成 StartLogo.c 文件:



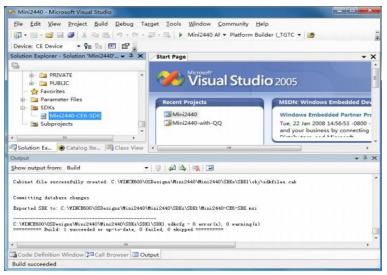
Step5: 把生成的文件替换 BSP 中的同名文件(位于 mini2440-BSP\Src\Kernel\Oal 目录中),重新编译内核,并烧写到板子中运行,即可看到自己制作的 WinCE 启动画面了:



## 4.2.5 创建 SDK

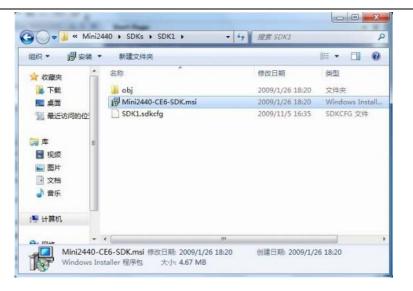

SDK 适用于: 当开发主机只安装了 VS2005, 但没有安装 Windows CE 6.0 的 Platform Builder 插件时,这时开发人员想通过 VS2005 开发 mini2440 的应用程序,就需要一个 SDK,它类似于 Embedded Visual C++所需的 SDK。

当你编译完缺省内核,此时可以通过 VS2005 平台创建相应的 SDK,注意:这里的 SDK 仅




适用于 VS2005 开发环境,它不能安装到 EVC,也不能安装到 VS2008,下面是创建 SDK 的详细步骤。

Step1: 运行 VS2005 并打开已经编译过的缺省内核示例工程 mini2440, 找到如图位置, 并右键点击 "Mini2440-CE6-SDK" 出现菜单, 点 Build 开始创建 SDK



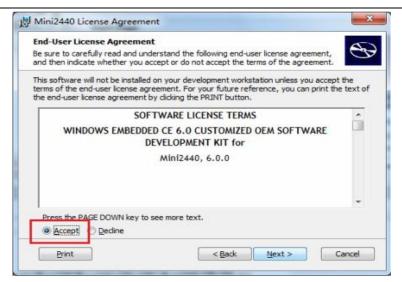

Step2: 稍等片刻, SDK 创建完毕, 如图所示



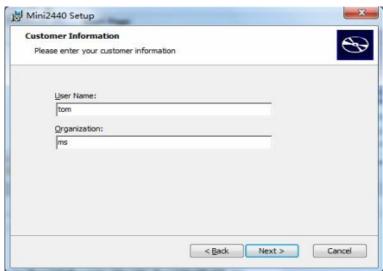
Step3: 在 C:\WINCE600\OSDesigns\Mini2440\Mini2440\SDKs\SDK1 目录下,可以看到已经生成 Mini2440-CE-SDK.msi 安装文件



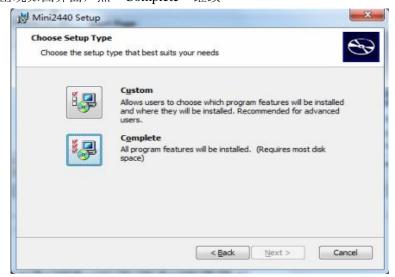



# 4.2.6 安装 SDK

要通过 VS2005 为 mini2440 开发应用程序,需要先安装刚才生产的 SDK,步骤如下: Step1:双击运行 Mini2440-CE6-SDK.msi,出现如下界面,点"Next"继续

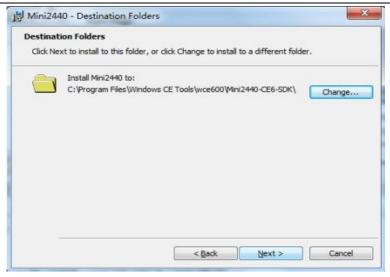



Step2: 如图选择 "I accept", 点 "Next" 继续

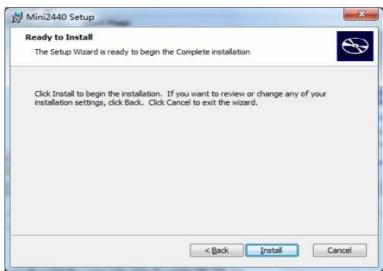




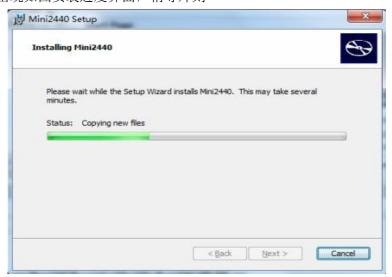

Step3: 出现如图界面,输入用户名和公司名,点"Next"继续




Step4: 出现如图界面,点 "Complete"继续




Step5: 出现如图界面,点"Next"继续






Step6: 出现如图界面,点"Install"继续



Step7: 出现如图安装进度界面,稍等片刻



Step8: 出现安装结束界面,点 "Finish"结束





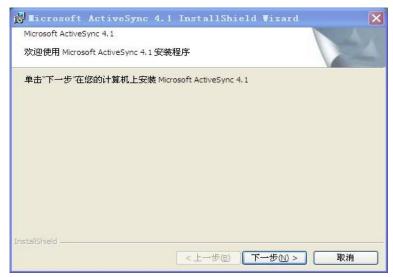
# 4.3 与 PC 同步

## 4.3.1 安装同步驱动与软件

Step1: 用 USB 线把 JMY901 与 PC 连接, 并打开 JMY901 电源, PC 上会弹出如下界面, 点"下一步", 继续



Step2: 点击"浏览",选择"CE用同步USB驱动",点击"确定",点击"下一步"继续

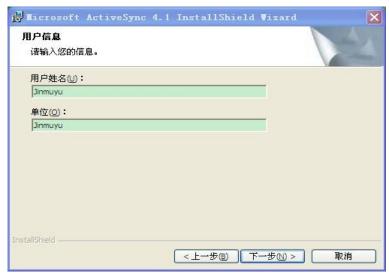





Step3: 出现如图界面,点击"完成"



Step4: 安装 ActiveSync 同步软件,出现如下界面,点击"下一步",继续




Step5: 出现如下界面,选择"我接受许可证协议中的条款",点击"下一步",继续





Step6: 出现如下界面,输入用户姓名与单位,点击"下一步",继续



Step7: 出现如下界面,选择安装路径,默认即可,点击"下一步",继续



Step8: 出现如下界面,点击"安装",开始安装软件

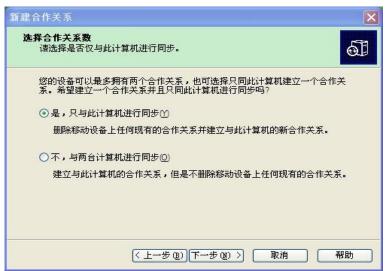




Step9: 出现如下界面,请等待



Step10: 出现如下界面,点击"完成",结束安装




Step11: 安装完 ActiveSync 软件后, PC 上会弹出如下界面, 选择"是", 点击"下一步", 继续

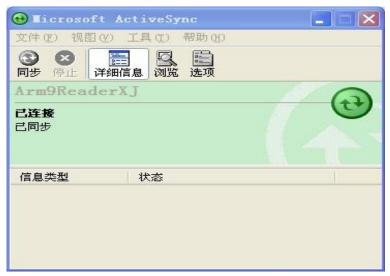




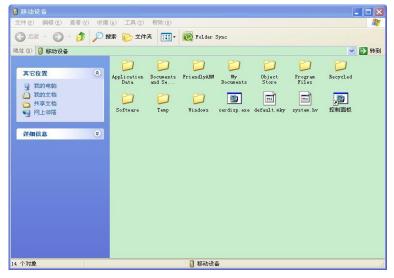
Step12: 出现如下界面,选择"是,..."点击"下一步",继续



Step13: 出现如下界面,不做任何更改,点击"下一步",继续




Step14: 出现如下界面,点击"完成",结束设置






Step15: PC 自动弹出如下界面,显示"连接",点击"浏览"



Step16: 弹出如下界面,为 WinCE6.0 的文件夹,此时 PC 与 JMY901 同步完成





# 4.4 通过 VS2005 创建应用程序,并编译下载到开发板运行

下面是使用 VS2005 的基本开发步骤:

### 4.4.1 创建项目

Step1: 打开运行 VS2005, 点菜单文件->新建->项目, 如图:



Step2: 出现"新建项目",选择"Visual C++"展开,选择"智能设备",在"Visual Studio 已 安装的模板"里选择"MFC 智能设备应用程序",输入名称:"JMY901Reader",点击"确定"



Step3: 出现如下界面,点击"下一步"





Step4: 出现如下界面,点击 ,将 "Pocket PC 2003" 取消



Step5: 选中左边的"Mini2440-CE-SDK",点击 下一步"





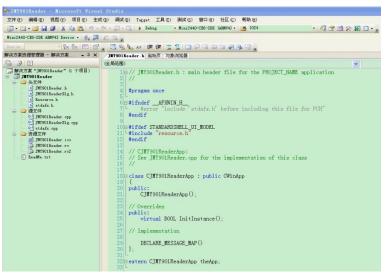
Step6: 出现如图界面,选中"基于对话框",在资源语言下选中"英语(美国)",点击"下一步"



Step7: 出现如下界面,点击"下一步"



Step8: 出现如下界面,点击"下一步"




Step9: 出现如下界面,点击"完成"





Step10: 出现如下界面, WinCE 程序开发设置完成, 下面就可以开始编写程序了!



到此 JMY901 开发过程介绍完毕!

此说明书在不断更新中,有问题可拨打技术支持电话:

+86 10-69559637, 奚先生